Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096207

RESUMO

Archaeological faunal remains provide key insights into human societies in the past, alongside information on previous resource utilisation and exploitation of wildlife populations. The great whales (Mysticete and sperm whales) were hunted unsustainably throughout the 16th - 20th centuries (herein defined as the modern period) leading to large population declines and variable recovery patterns among species. Humans have utilised whales as a resource through carcass scavenging for millennia; however, increasing local and regional ethnographic and archaeological evidence suggests that, prior to the modern period, hunting of the great whales was more common than previously thought; impacts of earlier hunting pressures on the population ecology of many whale species remains relatively unknown. Hunting guided by traditional ecological knowledge may have been sustainable and likely originated in societies that also incorporated opportunistic use of stranded individuals. The collation of georeferenced zooarchaeological data of the great whales between the 1st - 20th centuries CE worldwide will provide insight into the timescale and distribution of resource utilisation of the great whales and how this varied within and between societies, and may have changed over time. By comparing regions of known resource utilisation and breeding and feeding grounds of current-day whale populations, this information will subsequently be used to infer regions where whale populations were possibly lost or extirpated prior to detailed historical records. This systematic review protocol also provides a template for archaeologists, ecologists, and historians interested in using faunal remains to infer historical ecology and resource use of wild animal populations. The transparency of our data collection approach provides opportunities for reproducibility and comparability with future datasets.


Assuntos
Cachalote , Baleias , Animais , Humanos , Reprodutibilidade dos Testes , Revisões Sistemáticas como Assunto , Coleta de Dados , Animais Selvagens
2.
J Hered ; 114(6): 587-597, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578073

RESUMO

The 20th century commercial whaling industry severely reduced populations of great whales throughout the Southern Hemisphere. The effect of this exploitation on genetic diversity and population structure remains largely undescribed. Here, we compare pre- and post-whaling diversity of mitochondrial DNA (mtDNA) control region sequences for 3 great whales in the South Atlantic, such as the blue, humpback, and fin whale. Pre-whaling diversity is described from mtDNA extracted from bones collected near abandoned whaling stations, primarily from the South Atlantic island of South Georgia. These bones are known to represent the first stage of 20th century whaling and thus pre-whaling diversity of these populations. Post-whaling diversity is described from previously published studies reporting large-scale sampling of living whales in the Southern Hemisphere. Despite relatively high levels of surviving genetic diversity in the post-whaling populations, we found evidence of a probable loss of mtDNA lineages in all 3 species. This is evidenced by the detection of a large number of haplotypes found in the pre-whaling samples that are not present in the post-whaling samples. A rarefaction analysis further supports a loss of haplotypes in the South Atlantic humpback and Antarctic blue whale populations. The bones from former whaling stations in the South Atlantic represent a remarkable molecular archive for further investigation of the decline and ongoing recovery in the great whales of the Southern Hemisphere.


Assuntos
DNA Mitocondrial , Baleias , Animais , Baleias/genética , DNA Mitocondrial/genética , Regiões Antárticas
3.
Mol Ecol ; 32(13): 3353-3355, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37303067

RESUMO

Healthy insect populations are vital for maintaining natural ecosystems and essential to global food security. The ongoing dramatic loss of insect species and biomass is thus a global cause for concern, with much focus on this topic in the media. Yet, determining the mechanism behind these declines remains difficult, particularly when attempting to differentiate between anthropogenic drivers of biodiversity loss and long-term natural fluctuations. In a From the Cover manuscript in this issue of Molecular Ecology, Crossley et al. (2022) examined the long-term impact of land use change on freshwater insects by estimating levels of genetic diversity with publicly available data for the cytochrome c oxidase subunit 1 (CO1) mitochondrial locus from >700 aquatic insect species across the United States. Contemporary genetic diversity measures reflect both current and past demography and therefore are related to both past and present habitat change. Crossley et al. found that environments with greater cropland extent over the last 200 years were associated with lower genetic diversity in contemporary aquatic insect populations. This indicates that historical land use is an important factor in contemporary population dynamics. Most critically, in regions of historical cropland cover that have been converted towards other uses (such as urban environments) more recently, aquatic insect populations exhibited higher levels of genetic diversity, indicating a possible rebound in insect populations after cessation of agricultural activity. This study highlights the power of using publicly available data to answer crucial questions regarding the current biospheric emergency.


Assuntos
Ecologia , Ecossistema , Animais , Biodiversidade , Insetos/genética , Agricultura
4.
Genes (Basel) ; 14(5)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37239398

RESUMO

Fin whales Balaenoptera physalus were hunted unsustainably across the globe in the 19th and 20th centuries, leading to vast reductions in population size. Whaling catch records indicate the importance of the Southern Ocean for this species; approximately 730,000 fin whales were harvested during the 20th century in the Southern Hemisphere (SH) alone, 94% of which were at high latitudes. Genetic samples from contemporary whales can provide a window to past population size changes, but the challenges of sampling in remote Antarctic waters limit the availability of data. Here, we take advantage of historical samples in the form of bones and baleen available from ex-whaling stations and museums to assess the pre-whaling diversity of this once abundant species. We sequenced 27 historical mitogenomes and 50 historical mitochondrial control region sequences of fin whales to gain insight into the population structure and genetic diversity of Southern Hemisphere fin whales (SHFWs) before and after the whaling. Our data, both independently and when combined with mitogenomes from the literature, suggest SHFWs are highly diverse and may represent a single panmictic population that is genetically differentiated from Northern Hemisphere populations. These are the first historic mitogenomes available for SHFWs, providing a unique time series of genetic data for this species.


Assuntos
Baleia Comum , Animais , Baleia Comum/genética , Baleias/genética , Densidade Demográfica , Regiões Antárticas
5.
JASA Express Lett ; 1(6): 061202, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154373

RESUMO

Southern right whale vocalizations were recorded concurrently with visual observations off the sub-Antarctic Island of South Georgia, and the characteristics of these calls were described. Calls were also compared to those of humpback whales at South Georgia, to determine how the two species might reliably be distinguished acoustically. The southern right whale calls measured (which were all upcalls) had lower frequency with peak energy and were mostly shorter in duration than the calls measured from humpback whales. The frequency upsweep and the lack of harmonics of southern right whale calls were also diagnostic characteristics.


Assuntos
Jubarte , Animais , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...